Neue Transplantationstechnik geht unter die Haut

2022-09-09 22:02:19 By : Ms. Tammy Niu

Statt in der Petrischale, wollen Fraunhofer-Forscher Gewebe für Transplantationen direkt im Patienten züchten. Dafür drucken sie spezielle Isolationskammern, die unter die Haut gesetzt und dort mit körpereigenen Zellen gefüllt werden sollen. So entstünden passgenaue „Flicken“ aus körpereigenen Zellen, mit denen größere Wunden behandelt werden könnten.

Potsdam – Mediziner können heute selbst schwere Verletzungen, z. B. Verbrennungen oder tiefe Wunden, gut versorgen. Liegen beim Patienten Strukturen wie Knochen, Gefäße oder Sehnen frei, bleibt aber oft nur eine Gewebetransplantation mit durchblutetem Gewebe. Für den Patienten ist das mit einer stundenlangen Operation verbunden, wobei auch noch gesundes Körpergewebe verletzt wird. Wissenschaftler entwickeln daher gewebeschonende Methoden, mit denen sich durchblutete Gewebetransplantate erzeugen lassen, um Haut und anderes Gewebe gezielt zu ersetzen.

So könnte man etwa mit Kollagen ausgekleidete Isolationskammern aus Teflon unter die Haut vernähen und darin eine Arterie bzw. eine Vene schlaufenförmig als „Versorgungsleitung“ hineinlegen. Einwandernde Zellen und das Einwachsen von Gefäßen bauen das Kollagen innerhalb von zwei bis vier Wochen schließlich in ein transplantationsfähiges Gewebe um. Ein kleiner Eingriff, für den eine örtliche Betäubung ausreicht.

Im Gegensatz zu gezüchtetem Gewebe aus der Petrischale ist das in der Kammer entstehende Gewebe vollständig vaskularisiert – also mit Kapillaren durchsetzt – und damit durchblutet. Es entsteht also ein lebhaftes Bindegewebe, das die Form der Isolationskammer annimmt und für eine Transplantation geeignet ist, ohne dass gesundes Spendergewebe geopfert werden muss. Ein weiterer Vorteil: Da das Gewebe vom Körper des Patienten hergestellt wird, werden Abstoßungsreaktionen umgangen.

Forscher am Fraunhofer IAP evaluieren und optimieren diese Technik derzeit im Projekt Flexloop – gemeinsam mit dem Fraunhofer ILT und der BG Klinik Ludwigshafen – Klinik für Plastische- und Rekonstruktive Chirurgie der Universität Heidelberg. Das Projekt wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. „Wurden bisher nur runde Isolationskammern für die Gewebezüchtung genutzt, so können wir die Form der Isolationskammern erstmalig an die Form des Weichteildefekts des Patienten anpassen und damit die Personalisierung und Individualisierung der Medizin weiter vorantreiben“, sagt Dr. Wolfdietrich Meyer, Projektleiter am Fraunhofer IAP.

Möglich macht es der 3D-Druck, der das bisherige Fräsen der Kammern ersetzen soll. Da sich das herkömmliche Kammermaterial Teflon nicht drucken lässt, setzen die Experten vom Fraunhofer ILT dazu auf Photoharze. „Der 3D-Druck bietet nicht nur den Vorteil, die Form des Gewebes vorgeben zu können, wir haben auch Kammerdesigns entwickelt, durch die eine Gewebezüchtung möglichst komfortabel für Patienten abläuft und eine einfache Handhabung bei der Operation erlaubt“, erklärt Andreas Hoffmann, Projektleiter am Fraunhofer ILT.

Die Fraunhofer Forscher testen sowohl das Material an sich als auch die verschieden geformten Isolationskammern. Schließlich darf die Isolationskammer keine Abbauprodukte in den Körper des Patienten abgeben oder zu Abstoßungsreaktionen führen, sie muss also biokompatibel sein.

Wie haltbar ist das Material im menschlichen Organismus? Verändert es sich beispielsweise, wenn es auf Körpertemperatur gebracht wird? Die ersten Ergebnisse sehen vielversprechend aus. Was die gesamten Isolationskammern angeht, so stehen die mechanischen Eigenschaften im Vordergrund. Denn die Kammern werden mit dem umliegenden Gewebe vernäht oder an einer defektnahen Stelle unter die Haut implantiert: Hierbei dürfen sich für eine sichere Anwendung in der Kammer z. B. keinerlei Risse ausbilden.

Die Mediziner an der BG Klinik Ludwigshafen wiederum untersuchen, ob das nachwachsende Gewebe auch komplex geformte Isolationskammern vollständig ausfüllen kann. „Wir möchten damit vor allem zeigen, dass wir in den 3D-gedruckten Kammern formbares Gewebe züchten können, das wiederum – wie ein Art Puzzleteil – einen komplexen Weichteildefekt vollständig verschließen kann. Zusätzlich wird die biomechanische Qualität des gezüchteten Gewebes genau untersucht“, erklärt Dr. med. Florian Falkner, Assistenzarzt für Plastische und Rekonstruktive Chirurgie an der BG Klinik Ludwigshafen. Bis diese Form der Gewebezüchtung als routinemäßiges Verfahren reif für die klinische Anwendung ist, wird es allerdings noch ein paar Jahre an Entwicklung brauchen.

Auf der Medizintechnik-Messe Medica in Düsseldorf werden die 3D-gedruckten Kammern des Forscherteams der Fraunhofer-Institute vom 15. bis 18. November 2021 in Halle 3, Stand E74 vorgestellt.

Weitere Artikel zur Zukunft der Medizintechnik finden Sie in unserem Themenkanal Forschung.

* Dr. S. Mehlhase, Fraunhofer IAP, 14476 Potsdam

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung.

Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.

Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.

Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.

Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden.

Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://support.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.

Entwicklung und Einsatz von intelligenten Implantaten

Medizinische Sensoren: Sticht der Arzt uns bald Gold-Tattoos?

Cookie-Manager Impressum Datenschutz AGB Leserservice Abo-Kündigung Mediadaten Werbekunden-Center Hilfe Abo Autoren

Copyright © 2022 Vogel Communications Group

Diese Webseite ist eine Marke von Vogel Communications Group. Eine Übersicht von allen Produkten und Leistungen finden Sie unter www.vogel.de

VDE/DGBMT ; Nanobiotechnologie-Gruppe, Department Chemie; www.optimal-systems.de; Fraunhofer IAP, Foto: Till Budde; ZVEI/Devicemed; Medical Mountains; Messe Frankfurt Exhibition/ Petra Welzel; Oxaion; Hufschmied Zerspanungssysteme; Relyon Plasma GmbH; D.Quitter – VCG; Herpa Print GmbH; Open Mind; Zahoransky; Krauss-Maffei; © topshots - stock.adobe.com; Tontarra; gemeinfrei; Gerresheimer; elizaliv - stock.adobe.com; Medical Mountains; BVMed/Darius Ramazani; Юлия Лазебная - stock.adobe.com; MQ-Illustrations - stock.adobe.com; Hurca! – stock.adobe.com; metamorworks - stock.adobe.com; Andreas Heddergott / TUM; Angie Wolf / UKW; Ran Huo und Jianyu Li, McGill University; WWU - Peter Leßmann; Aus: “Multispectral Optoacoustic Dermoscopy: Methods and Applications”, M. Schwarz, 2017, mediatum.ub.tum.de